1,175 research outputs found

    The origin of the warped heliospheric current sheet

    Get PDF
    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples

    Structure and evolution of the large scale solar and heliospheric magnetic fields

    Get PDF
    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole

    Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models

    Full text link
    Observations show that the photospheric solar magnetic dipole usually does not vanish during the reversal of the solar magnetic field, which occurs in each solar cycle. In contrast, mean-field solar dynamo models predict that the dipole field does become zero. In a recent paper Moss et al. (2013) suggested that this contradiction can be explained as a large-scale manifestation of small-scale magnetic fluctuations of the surface poloidal field. Here we compare this interpretation with WSO (Wilcox Solar Observatory) photospheric magnetic field data in order to determine the amplitude of magnetic fluctuations required to explain the phenomenon and to compare the results with predictions from a simple dynamo model which takes these fluctuations into account. We demonstrate that the WSO data concerning the magnetic dipole reversals are very similar to the predictions of our very simple solar dynamo model, which includes both mean magnetic field and fluctuations. The ratio between the rms value of the magnetic fluctuations and the mean field is estimated to be about 2, in reasonable agreement with estimates from sunspot data. The reversal epoch, during which the fluctuating contribution to the dipole is larger than that from the mean field, is about 4 months. The memory time of the fluctuations is about 2 months. Observations demonstrate that the rms of the magnetic fluctuations is strongly modulated by the phase of the solar cycle. This gives additional support to the concept that the solar magnetic field is generated by a single dynamo mechanism rather than also by independent small-scale dynamo action. A suggestion of a weak nonaxsymmetric magnetic field of a fluctuating nature arises from the analysis, with a lifetime of about 1 year.Comment: 9 pages, 10 figures, accepted versio

    How much more can sunspots tell us about the solar dynamo?

    Get PDF
    Sunspot observations inspired solar dynamo theory and continue to do so. Simply counting them established the sunspot cycle and its period. Latitudinal distributions introduced the tough constraint that the source of sunspots moves equator-ward as the cycle progresses. Observations of Hale's polarity law mandated hemispheric asymmetry. How much more can sunspots tell us about the solar dynamo? We draw attention to a few outstanding questions raised by inherent sunspot properties. Namely, how to explain sunspot rotation rates, the incoherence of follower spots, the longitudinal spacing of sunspot groups, and brightness trends within a given sunspot cycle. After reviewing the first several topics, we then present new results on the brightness of sunspots in Cycle 24 as observed with the Helioseismic Magnetic Imager (HMI). We compare these results to the sunspot brightness observed in Cycle 23 with the Michelson Doppler Imager (MDI). Next, we compare the minimum intensities of five sunspots simultaneously observed by the Hinode Solar Optical Telescope Spectropolarimeter (SOT-SP) and HMI to verify that the minimum brightness of sunspot umbrae correlates well to the maximum field strength. We then examine 90 and 52 sunspots in the north and south hemisphere, respectively, from 2010 - 2012. Finally, we conclude that the average maximum field strengths of umbra 40 Carrington Rotations into Cycle 24 are 2690 Gauss, virtually indistinguishable from the 2660 Gauss value observed at a similar time in Cycle 23 with MDI

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code

    Full text link
    The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release, are reported here.Comment: Accepted for publication in Solar Physic

    Evidence for a Latitudinal Gradient of the Cosmic Ray Intensity Associated with a Change in the Tilt of the Heliospheric Current Sheet

    Get PDF
    Since mid-1985, the average flux of >70 MeV/nucleon cosmic rays at Voyager 2 (r_2 ∼ 17 AU, Θ_2 ∼ 0°) has been ∼3-5% greater than that at Voyager 1 (r_1 ∼ 24 AU, Θ_1 ∼ 26°N). This is the first direct observation over such a large radial range in which the galactic cosmic ray flux closer to the sun is higher than the flux farther from the sun for an extended period of time. This observation is consistent with the presence of a negative latitudinal gradient G_Θ=−0.36 ± 0.05 (or −0.60 ± 0.08) %/deg, assuming a coexistent radial gradient G_r of 1 (or 2) %/AU. We suggest that the appearance of this persistent negative latitudinal gradient may be due to the abrupt, large decrease of the heliospheric current sheet tilt to ∼20° in early 1985

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches

    Full text link
    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at http://jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.Comment: 27 pages, 7 figures. Accepted to Solar Physic

    The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23

    Get PDF
    The 11-year cycle of solar activity follows Hale's law by reversing the magnetic polarity of leading and following sunspots in bipolar regions during the minima of activity. In the 1996-97 solar minimum, most solar activity emerged in narrow longitudinal zones - `active longitudes' but over a range in latitude. Investigating the distribution of solar magnetic flux, we have found that the Hale sunspot polarity reversal first occurred in these active zones. We have estimated the rotation rates of the magnetic flux in the active zones before and after the polarity reversal. Comparing these rotation rates with the internal rotation inferred by helioseismology, we suggest that both `old' and `new' magnetic fluxes were probably generated in a low-latitude zone near the base of the solar convection zone. The reversal of active region polarity observed in certain longitudes at the beginning of a new solar cycle suggests that the phenomenon of active longitudes may give fundamental information about the mechanism of the solar cycle. The non-random distribution of old-cycle and new-cycle fluxes presents a challenge for dynamo theories, most of which assume a uniform longitudinal distribution of solar magnetic fields.Comment: 4 pages, 5 figures; accepted for publication in ApJ Letter

    Solar mean magnetic field variability: A wavelet approach to Wilcox Solar Observatory and SOHO/Michelson Doppler Imager observations

    Get PDF
    Solar mean magnetic field (SMMF) measurements from the Wilcox Solar Observatory and with the SOHO/MDI instrument are described and analyzed. Even though two completely different methods of observation are used, the two data sets obtained show a strong similarity. Using continuous wavelet transforms, SMMF variability is found at a number of temporal scales. Detected SMMF signals with a 1–2 year period are considered to be linked to variations in the internal rotation of the Sun. Intermediate SMMF oscillations with a period of 80–200 days are probably connected to the evolution of large active regions. We also find evidence for 90 min variations with coronal mass ejections as a suggested origin

    Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-axisymmetry with Polarity Flip-flops

    Full text link
    Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2∘7.2^{\circ} tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a "flip-flop" type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.Comment: 13 pages, 4 figures, Solar Physics, Topical Issue of Space Climate Symposium, in pres
    • …
    corecore